Wednesday, 28 December 2016

Data Mining - Retrieving Information From Data

Data Mining - Retrieving Information From Data

Data mining definition is the process of retrieving information from data. It has become very important now days because data that is processed is usually kept for future reference and mainly for security purposes in a company. Data transforms is processed into information and it is mostly used in different ways depending on what information one is extracting and from where the person is extracting the information.

It is commonly used in marketing, scientific information and research work, fraud detection and surveillance and many more and most of this work is done using a computer. This definition can come in different terms data snooping, data fishing and data dredging all this refer to data mining but it depends in which department one is. One must know data mining definition so that he can be in a position to make data.

The method of data mining has been there for so many centuries and it is used up to date. There were early methods which were used to identify data mining there are mainly two: regression analysis and bayes theorem. These methods are never used now days because a lot of people have advanced and technology has really changed the entire system.

With the coming up or with the introduction of computers and technology, it becomes very fast and easy to save information. Computers have made work easier and one can be able to expand more knowledge about data crawling and learn on how data is stored and processed through computer science.

Computer science is a course that sharpens one skill and expands more about data crawling and the definition of what data mining means. By studying computer science one can be in a position to know: clustering, support vector machines and decision trees there are some of the units that are found on computer science.

It's all about all this and this knowledge must be applied here. Government institutions, small scale business and supermarkets use data.

The main reason most companies use data mining is because data assist in the collection of information and observations that a company goes through in their daily activity. Such information is very vital in any companies profile and needs to be checked and updated for future reference just in case something happens.

Businesses which use data crawling focus mainly on return of investments, and they are able to know whether they are making a profit or a loss within a very short period. If the company or the business is making a profit they can be in a position to give customers an offer on the product in which they are selling so that the business can be a position to make more profit in an organization, this is very vital in human resource departments it helps in identifying the character traits of a person in terms of job performance.

Most people who use this method believe that is ethically neutral. The way it is being used nowadays raises a lot of questions about security and privacy of its members. Data mining needs good data preparation which can be in a position to uncover different types of information especially those that require privacy.

A very common way in this occurs is through data aggregation.

Data aggregation is when information is retrieved from different sources and is usually put together so that one can be in a position to be analyze one by one and this helps information to be very secure. So if one is collecting data it is vital for one to know the following:

    How will one use the data that he is collecting?
    Who will mine the data and use the data.
    Is the data very secure when am out can someone come and access it.
    How can one update the data when information is needed
    If the computer crashes do I have any backup somewhere.

It is important for one to be very careful with documents which deal with company's personal information so that information cannot easily be manipulated.

source : http://ezinearticles.com/?Data-Mining---Retrieving-Information-From-Data&id=5054887

Monday, 19 December 2016

One of the Main Differences Between Statistical Analysis and Data Mining

One of the Main Differences Between Statistical Analysis and Data Mining

Two methods of analyzing data that are common in both academic and commercial fields are statistical analysis and data mining. While statistical analysis has a long scientific history, data mining is a more recent method of data analysis that has arisen from Computer Science. In this article I want to give an introduction to these methods and outline what I believe is one of the main differences between the two fields of analysis.

Statistical analysis commonly involves an analyst formulating a hypothesis and then testing the validity of this hypothesis by running statistical tests on data that may have been collected for the purpose. For example, if an analyst was studying the relationship between income level and the ability to get a loan, the analyst may hypothesis that there will be a correlation between income level and the amount of credit someone may qualify for.

The analyst could then test this hypothesis with the use of a data set that contains a number of people along with their income levels and the credit available to them. A test could be run that indicates for example that there may be a high degree of confidence that there is indeed a correlation between income and available credit. The main point here is that the analyst has formulated a hypothesis and then used a statistical test along with a data set to provide evidence in support or against that hypothesis.

Data mining is another area of data analysis that has arisen more recently from computer science that has a number of differences to traditional statistical analysis. Firstly, many data mining techniques are designed to be applied to very large data sets, while statistical analysis techniques are often designed to form evidence in support or against a hypothesis from a more limited set of data.

Probably the mist significant difference here, however, is that data mining techniques are not used so much to form confidence in a hypothesis, but rather extract unknown relationships may be present in the data set. This is probably best illustrated with an example. Rather than in the above case where a statistician may form a hypothesis between income levels and an applicants ability to get a loan, in data mining, there is not typically an initial hypothesis. A data mining analyst may have a large data set on loans that have been given to people along with demographic information of these people such as their income level, their age, any existing debts they have and if they have ever defaulted on a loan before.

A data mining technique may then search through this large data set and extract a previously unknown relationship between income levels, peoples existing debt and their ability to get a loan.

While there are quite a few differences between statistical analysis and data mining, I believe this difference is at the heart of the issue. A lot of statistical analysis is about analyzing data to either form confidence for or against a stated hypothesis while data mining is often more about applying an algorithm to a data set to extract previously unforeseen relationships.

Source:http://ezinearticles.com/?One-of-the-Main-Differences-Between-Statistical-Analysis-and-Data-Mining&id=4578250

Tuesday, 13 December 2016

Web Data Extraction Services

Web Data Extraction Services

Web Data Extraction from Dynamic Pages includes some of the services that may be acquired through outsourcing. It is possible to siphon information from proven websites through the use of Data Scrapping software. The information is applicable in many areas in business. It is possible to get such solutions as data collection, screen scrapping, email extractor and Web Data Mining services among others from companies providing websites such as Scrappingexpert.com.

Data mining is common as far as outsourcing business is concerned. Many companies are outsource data mining services and companies dealing with these services can earn a lot of money, especially in the growing business regarding outsourcing and general internet business. With web data extraction, you will pull data in a structured organized format. The source of the information will even be from an unstructured or semi-structured source.

In addition, it is possible to pull data which has originally been presented in a variety of formats including PDF, HTML, and test among others. The web data extraction service therefore, provides a diversity regarding the source of information. Large scale organizations have used data extraction services where they get large amounts of data on a daily basis. It is possible for you to get high accuracy of information in an efficient manner and it is also affordable.

Web data extraction services are important when it comes to collection of data and web-based information on the internet. Data collection services are very important as far as consumer research is concerned. Research is turning out to be a very vital thing among companies today. There is need for companies to adopt various strategies that will lead to fast means of data extraction, efficient extraction of data, as well as use of organized formats and flexibility.

In addition, people will prefer software that provides flexibility as far as application is concerned. In addition, there is software that can be customized according to the needs of customers, and these will play an important role in fulfilling diverse customer needs. Companies selling the particular software therefore, need to provide such features that provide excellent customer experience.

It is possible for companies to extract emails and other communications from certain sources as far as they are valid email messages. This will be done without incurring any duplicates. You will extract emails and messages from a variety of formats for the web pages, including HTML files, text files and other formats. It is possible to carry these services in a fast reliable and in an optimal output and hence, the software providing such capability is in high demand. It can help businesses and companies quickly search contacts for the people to be sent email messages.

It is also possible to use software to sort large amount of data and extract information, in an activity termed as data mining. This way, the company will realize reduced costs and saving of time and increasing return on investment. In this practice, the company will carry out Meta data extraction, scanning data, and others as well.

Source: http://ezinearticles.com/?Web-Data-Extraction-Services&id=4733722

Wednesday, 7 December 2016

Data Mining vs Screen-Scraping

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Saturday, 3 December 2016

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.
- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.
- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).
- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.
- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.
- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.
- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.
- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).
- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.
- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.
- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.
- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.
- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.
- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.
- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Wednesday, 30 November 2016

Assuring Scraping Success with Proxy Data Scraping

Assuring Scraping Success with Proxy Data Scraping

Have you ever heard of "Data Scraping?" Data Scraping is the process of collecting useful data that has been placed in the public domain of the internet (private areas too if conditions are met) and storing it in databases or spreadsheets for later use in various applications. Data Scraping technology is not new and many a successful businessman has made his fortune by taking advantage of data scraping technology.

Sometimes website owners may not derive much pleasure from automated harvesting of their data. Webmasters have learned to disallow web scrapers access to their websites by using tools or methods that block certain ip addresses from retrieving website content. Data scrapers are left with the choice to either target a different website, or to move the harvesting script from computer to computer using a different IP address each time and extract as much data as possible until all of the scraper's computers are eventually blocked.

Thankfully there is a modern solution to this problem. Proxy Data Scraping technology solves the problem by using proxy IP addresses. Every time your data scraping program executes an extraction from a website, the website thinks it is coming from a different IP address. To the website owner, proxy data scraping simply looks like a short period of increased traffic from all around the world. They have very limited and tedious ways of blocking such a script but more importantly -- most of the time, they simply won't know they are being scraped.

You may now be asking yourself, "Where can I get Proxy Data Scraping Technology for my project?" The "do-it-yourself" solution is, rather unfortunately, not simple at all. Setting up a proxy data scraping network takes a lot of time and requires that you either own a bunch of IP addresses and suitable servers to be used as proxies, not to mention the IT guru you need to get everything configured properly. You could consider renting proxy servers from select hosting providers, but that option tends to be quite pricey but arguably better than the alternative: dangerous and unreliable (but free) public proxy servers.

There are literally thousands of free proxy servers located around the globe that are simple enough to use. The trick however is finding them. Many sites list hundreds of servers, but locating one that is working, open, and supports the type of protocols you need can be a lesson in persistence, trial, and error. However if you do succeed in discovering a pool of working public proxies, there are still inherent dangers of using them. First off, you don't know who the server belongs to or what activities are going on elsewhere on the server. Sending sensitive requests or data through a public proxy is a bad idea. It is fairly easy for a proxy server to capture any information you send through it or that it sends back to you. If you choose the public proxy method, make sure you never send any transaction through that might compromise you or anyone else in case disreputable people are made aware of the data.

A less risky scenario for proxy data scraping is to rent a rotating proxy connection that cycles through a large number of private IP addresses. There are several of these companies available that claim to delete all web traffic logs which allows you to anonymously harvest the web with minimal threat of reprisal. Companies such as offer large scale anonymous proxy solutions, but often carry a fairly hefty setup fee to get you going.

Source:http://ezinearticles.com/?Assuring-Scraping-Success-with-Proxy-Data-Scraping&id=248993

Wednesday, 23 November 2016

How to scrape search results from search engines like Google, Bing and Yahoo

How to scrape search results from search engines like Google, Bing and Yahoo

Search giants like Google, Yahoo and Bing made their empire on scraping others content. However, they don’t want you to scrape them. How ironic, isn’t it?

Search engine performance is a very important metric all digital marketers want to measure and improve. I’m sure you will be using some great SEO tools to check how your keywords perform. All great SEO tool comes with a search keyword ranking feature. The tools will tell you how your keywords are performing in google, yahoo bing etc.

 How will you get data from search engines If you want to build a keyword ranking app?

 These search engines have API’s but the daily query limit is very low and not useful for the commercial purpose. The only solution is to scrape search results. Search engine giants obviously know this :). Once they know that you are scraping, they will  block your IP, Period!

 How do Search engines detect bots?

 Here are the common methods of detection of bots.

* IP address: Search engines can detect if there are too many requests coming from a single IP. If a high amount of traffic is detected, they will throw a captcha.

 * Search patterns: Search engines match traffic patterns to an existing set of patterns and if there is huge variation, they will classify this as a bot.

 If you don’t have access to sophisticated technology, it is impossible to scrape search engines like google, Bing or Yahoo.

 How to avoid detection

There are some things you can do to  avoid detection.

    Scrape slowly and don’t try to squeeze everything at once.
    Switch user agents between queries
    Scrape randomly and don’t follow the same pattern
    Use intelligent IP rotations
    Clear Cookies after each IP change or disable them completely

Thanks for reading this blog post.

Source: http://blog.datahut.co/how-to-scrape-search-results-from-search-engines-like-google-bing-and-yahoo/

Saturday, 5 November 2016

Outsource Data Mining Services to Offshore Data Entry Company

Outsource Data Mining Services to Offshore Data Entry Company

Companies in India offer complete solution services for all type of data mining services.

Data Mining Services and Web research services offered, help businesses get critical information for their analysis and marketing campaigns. As this process requires professionals with good knowledge in internet research or online research, customers can take advantage of outsourcing their Data Mining, Data extraction and Data Collection services to utilize resources at a very competitive price.

In the time of recession every company is very careful about cost. So companies are now trying to find ways to cut down cost and outsourcing is good option for reducing cost. It is essential for each size of business from small size to large size organization. Data entry is most famous work among all outsourcing work. To meet high quality and precise data entry demands most corporate firms prefer to outsource data entry services to offshore countries like India.

In India there are number of companies which offer high quality data entry work at cheapest rate. Outsourcing data mining work is the crucial requirement of all rapidly growing Companies who want to focus on their core areas and want to control their cost.

Why outsource your data entry requirements?

Easy and fast communication: Flexibility in communication method is provided where they will be ready to talk with you at your convenient time, as per demand of work dedicated resource or whole team will be assigned to drive the project.

Quality with high level of Accuracy: Experienced companies handling a variety of data-entry projects develop whole new type of quality process for maintaining best quality at work.

Turn Around Time: Capability to deliver fast turnaround time as per project requirements to meet up your project deadline, dedicated staff(s) can work 24/7 with high level of accuracy.

Affordable Rate: Services provided at affordable rates in the industry. For minimizing cost, customization of each and every aspect of the system is undertaken for efficiently handling work.

Outsourcing Service Providers are outsourcing companies providing business process outsourcing services specializing in data mining services and data entry services. Team of highly skilled and efficient people, with a singular focus on data processing, data mining and data entry outsourcing services catering to data entry projects of a varied nature and type.

Why outsource data mining services?

360 degree Data Processing Operations
Free Pilots Before You Hire
Years of Data Entry and Processing Experience
Domain Expertise in Multiple Industries
Best Outsourcing Prices in Industry
Highly Scalable Business Infrastructure
24X7 Round The Clock Services

The expertise management and teams have delivered millions of processed data and records to customers from USA, Canada, UK and other European Countries and Australia.

Outsourcing companies specialize in data entry operations and guarantee highest quality & on time delivery at the least expensive prices.

Herat Patel, CEO at 3Alpha Dataentry Services possess over 15+ years of experience in providing data related services outsourced to India.

Visit our Facebook Data Entry profile for comments & reviews.

Our services helps to convert any kind of  hard copy sources, our data mining services helps to collect business contacts, customer contact, product specifications etc., from different web sources. We promise to deliver the best quality work and help you excel in your business by focusing on your core business activities. Outsource data mining services to India and take the advantage of outsourcing and save cost.

Source: http://ezinearticles.com/?Outsource-Data-Mining-Services-to-Offshore-Data-Entry-Company&id=4027029

Wednesday, 19 October 2016

Scraping Yelp Data and How to use?

Scraping Yelp Data and How to use?

We get a lot of requests to scrape data from Yelp. These requests come in on a daily basis, sometimes several times a day. At the same time we have not seen a good business case for a commercial project with scraping Yelp.

We have decided to release a simple example Yelp robot which anyone can run on Chrome inside your computer, tune to your own requirements and collect some data. With this robot you can save business contact information like address, postal code, telephone numbers, website addresses etc.  Robot is placed in our Demo space on Web Robots portal for anyone to use, just sign up, find the robot and use it.

How to use it:

    Sign in to our portal here.
    Download our scraping extension from here.
    Find robot named Yelp_us_demo in the dropdown.
    Modify start URL to the first page of your search results. For example: http://www.yelp.com/search?find_desc=Restaurants&find_loc=Arlington,+VA,+USA
    Click Run.
    Let robot finish it’s job and download data from portal.

Some things to consider:

This robot is placed in our Demo space – therefore it is accessible to anyone. Anyone will be able to modify and run it, anyone will be able to download collected data. Robot’s code may be edited by someone else, but you can always restore it from sample code below. Yelp limits number of search results, so do not expect to scrape more results than you would normally see by search.

In case you want to create your own version of such robot, here it’s full code:

// starting URL above must be the first page of search results.
// Example: http://www.yelp.com/search?find_desc=Restaurants&find_loc=Arlington,+VA,+USA

steps.start = function () {

   var rows = [];

   $(".biz-listing-large").each (function (i,v) {
     if ($("h3 a", v).length > 0)
       {
        var row = {};
        row.company = $(".biz-name", v).text().trim();
        row.reviews =$(".review-count", v).text().trim();
        row.companyLink = $(".biz-name", v)[0].href;
        row.location = $(".secondary-attributes address", v).text().trim();
        row.phone = $(".biz-phone", v).text().trim();
        rows.push (row);
      }
   });

   emit ("yelp", rows);
   if ($(".next").length === 1) {
     next ($(".next")[0].href, "start");
   }
 done();
};

Source: https://webrobots.io/scraping-yelp-data/

Friday, 30 September 2016

Scraping Yelp Business Data With Python Scraping Script

Scraping Yelp Business Data With Python Scraping Script

Yelp is a great source of business contact information with details like address, postal code, contact information; website addresses etc. that other site like Google Maps just does not. Yelp also provides reviews about the particular business. The yelp business database can be useful for telemarketing, email marketing and lead generation.

Are you looking for yelp business details database? Are you looking for scraping data from yelp website/business directory? Are you looking for yelp screen scraping software? Are you looking for scraping the business contact information from the online Yelp? Then you are at the right place.

Here I am going to discuss how to scrape yelp data for lead generation and email marketing. I have made a simple and straight forward yelp data scraping script in python that can scrape data from yelp website. You can use this yelp scraper script absolutely free.

I have used urllib, BeautifulSoup packages. Urllib package to make http request and parsed the HTML using BeautifulSoup, used Threads to make the scraping faster.
Yelp Scraping Python Script

import urllib
from bs4 import BeautifulSoup
import re
from threading import Thread

#List of yelp urls to scrape
url=['http://www.yelp.com/biz/liman-fisch-restaurant-hamburg','http://www.yelp.com/biz/casa-franco-caramba-hamburg','http://www.yelp.com/biz/o-ren-ishii-hamburg','http://www.yelp.com/biz/gastwerk-hotel-hamburg-hamburg-2','http://www.yelp.com/biz/superbude-hamburg-2','http://www.yelp.com/biz/hotel-hafen-hamburg-hamburg','http://www.yelp.com/biz/hamburg-marriott-hotel-hamburg','http://www.yelp.com/biz/yoho-hamburg']

i=0
#function that will do actual scraping job
def scrape(ur):

          html = urllib.urlopen(ur).read()
          soup = BeautifulSoup(html)

      title = soup.find('h1',itemprop="name")
          saddress = soup.find('span',itemprop="streetAddress")
          postalcode = soup.find('span',itemprop="postalCode")
          print title.text
          print saddress.text
          print postalcode.text
          print "-------------------"

threadlist = []

#making threads
while i<len(url):
          t = Thread(target=scrape,args=(url[i],))
          t.start()
          threadlist.append(t)
          i=i+1

for b in threadlist:
          b.join()

Recently I had worked for one German company and did yelp scraping project for them and delivered data as per their requirement. If you looking for scraping data from business directories like yelp then send me your requirement and I will get back to you with sample.

Source: http://webdata-scraping.com/scraping-yelp-business-data-python-scraping-script/

Tuesday, 20 September 2016

Run Code Template – New Feature Added to Fminer Web Scraping Tool

Run Code Template – New Feature Added to Fminer Web Scraping Tool

Fminer is one of the powerful web scraping software, I already given brief of all the Fminer features in previous post. In this post I am going to introduce one of the interesting feature of fminer which is Run Code Template that is recently added to Fminer, this feature is similar to “Fminer Run Code” action but it’s different in a way you can use it. The Run Code Action you can use inside the data scraping flow and python code get executed when scraper start running.

While Run Code Templates are the saved python code snippets that you can run on the data tables after scraping completes. Assume if you get white space in scraped data then you can easily trim this left and right spaces by just executing “strip_column” template, see the code of that template below.

'''Strip all data of a column in data table
Remove the blank of data in the head and the tail.
'''

tabName = '[%table1|data table%]'
colName = '[%table1.column1|table column for strip%]'

tab = tables[tabName]
for i, row in enumerate(tab):
    row[colName] = row[colName].strip()   
    tab.edit_row(i, row)

This template comes with Fminer and few other template like “merge_tables_with_same_columns”.  Below are the steps how you can execute template python code on scraped data.

Step 1: Click on second icon from right that says “Run Code” under the Data section

Step 2: One popup will appear, you need to click on “Templates” icon and choose the template you want to execute and then click on Ok.

Step 3: Now the window will appear for configuration that will ask you to choose the table and column under that table on which you want to execute the code. Now click on Ok again.

Step 4: Now you can see the code of that template, now you can click on execute icon and script will start running, based on number of records it will take time to finish execution.

In many web scraping projects I found this template code very handy for cleaning data and making life easy. Templates are stored at following path so you can create your own template with customized code.

C:\Program Files (x86)\FMiner\templates

I have created one template which I use to remove HTML code that comes while scraping badly organized HTML pages. Below is the code of template for stripping html:

'''Strip HTML will remove all html tags of a column in data table.
'''
import re
tabName = '[%table1|data table%]'
colName = '[%table1.column1|table column for substring%]'
colNew = '[%table1.column1|table column to add new data%]'
tab = tables[tabName]
for i, row in enumerate(tab):
    cleanr =re.compile('<.*?>')
    cleantext = re.sub(cleanr,'', row[colName])
    row[colNew] = cleantext 
    tab.edit_row(i, row)

Stay connected as I am going to post more code templates that will make your web scraping life easy and manipulate data on fly.

Source: http://webdata-scraping.com/run-code-template-new-feature-added-fminer-web-scraping-tool/

Thursday, 8 September 2016

How Web Scraping for Brand Monitoring is used in Retail Sector

How Web Scraping for Brand Monitoring is used in Retail Sector

Structured or unstructured, business data always plays an instrumental part in driving growth, development, and innovation for your dream venture. Irrespective of industrial sectors or verticals, big data, seems to be of paramount significance for every business or enterprise.

The unsurpassed popularity and increasing importance of big data gave birth to the concept of web scraping, thus enhancing growth opportunities for startups. Large or small, every business establishment will now achieve successful website monitoring and tracking.
How web scraping serves your branding need?

Web scraping helps in extracting unorganized data and ordering it into organized and manageable formats. So if your brand is being talked about in multiple ways (on social media, on expert forums, in comments etc.), you can set the scraping tool algorithm to fetch only data that contains reference about the brand. As an outcome, marketers and business owners around the brand can gauge brand sentiment and tweak their launch marketing campaign to enhance visibility.

Look around and you will discover numerous web scraping solutions ranging from manual to fully automated systems. From Reputation Tracking to Website monitoring, your web scraper can help create amazing insights from seemingly random bits of data (both in structured as well as unstructured format).
Using web scraping

The concept of web scraping revolutionizes the use of big data for business. With its availability across sectors, retailers are on cloud nine. Here’s how the retail market is utilizing the power of Web Scraping for brand monitoring.

Determining pricing strategy

The retail market is filled with competition. Whether it is products or pricing strategies, every retailer competes hard to stay ahead of the growth curve. Web scraping techniques will help you crawl price comparison sites’ pricing data, product descriptions, as well as images to receive data for comparison, affiliation, or analytics.

As a result, retailers will have the opportunity to trade their products at competitive prices, thus increasing profit margins by a whopping 10%.

Tracking online presence

Current trends in ecommerce herald the need for a strong online presence. Web scraping takes cue from this particular aspect, thus scraping reviews and profiles on websites. By providing you a crystal clear picture of product performance, customer behavior, and interactions, web scraping will help you achieve Online Brand Intelligence and monitoring.
Detection of fraudulent reviews

Present-day purchasers have this unique habit of referring to reviews, before finalizing their purchase decisions. Web scraping helps in the identification of opinion-spamming, thus figuring out fake reviews. It will further extend support in detecting, reviewing, streamlining, or blocking reviews, according to your business needs.
Online reputation management

Web data scraping helps in figuring out avenues to take your ORM objectives forward. With the help of the scraped data, you learn about both the impactful as well as vulnerable areas for online reputation management. You will have the web crawler identifying demographic opinions such as age group, gender, sentiments, and GEO location.

Social media analytics

Since social media happens to be one of the most crucial factors for retailers, it will be imperative to Scrape Social Media websites and extract data from Twitter. The web scraping technology will help you watch your brand in Social Media along with fetching Data for social media analytics. With social media channels such as Twitter monitoring services, you will strengthen your firm’s’ branding even more than before.
Advantages of BM

As a business, you might want to monitor your brand in social media to gain deep insights about your brand’s popularity and the current consumer behavior. Brand monitoring companies will watch your brand in social media and come up with crucial data for social media analytics. This process has immense benefits for your business, these are summarized over here –

Locate Infringers

Leading brands often face the challenge thrown by infringers. When brand monitoring companies keep a close look at products available in the market, there is less probability of a copyright infringement. The biggest infringement happens in the packaging, naming and presentation of products. With constant monitoring and legal support provided by the Trademark Law, businesses could remain protected from unethical competitors and illicit business practices.

Manage Consumer Reaction and Competitor’s Challenges

A good business keeps a check on the current consumer sentiment in the targeted demographic and positively manages the same in the interest of their brand. The feedback from your consumers could be affirmative or negative but if you have a hold on the social media channels, web platforms and forums, you, as a brand will be able to propagate trust at all times.

When competitor brands indulge in backbiting or false publicity about your brand, you can easily tame their negative comments by throwing in a positive image in front of your target audience. So, brand monitoring and its active implementation do help in positive image building and management for businesses.
Why Web scraping for BM?

Web scraping for brand monitoring gives you a second pair of eyes to look at your brand as a general consumer. Considering the flowing consumer sentiment in the market during a specific business season, you could correct or simply innovate better ways to mold the target audience in your brand’s favor. Through a systematic approach towards online brand intelligence and monitoring, future business strategies and possible brand responses could be designed, keeping your business actively prepared for both types of scenarios.

For effective web scraping, businesses extract data from Twitter that helps them understand ‘what’s trending’ in their business domain. They also come closer to reality in terms of brand perception, user interaction and brand visibility in the notions of their clientele. Web scraping professionals or companies scrape social media websites to gather relevant data related to your brand or your competitor’s that has the potential to affect your growth as a business. Management and organization of this data is done to extract out significant and reference building facts. Future strategy for your brand is designed by brand monitoring professionals keeping in mind the facts accumulated through web scraping. The data obtained through web scraping helps in –

Knowing the actual brand potential,
Expanding brand coverage,
Devising brand penetration,
Analyzing scope and possibilities for a brand and
Design thoughtful and insightful brand strategies.

In simple words, web scraping provides a business enough base of information that could be used to devise future plans and to make suggestive changes in the current business strategy.

Advantages of Web scraping for BM

Web scraping has made things seamless for businesses involved in managing their brands and active brand monitoring. There is no doubt, that web scraping for brand monitoring comes with immense benefits, some of these are –

Improved customer insight

When you have in hand and factual knowledge about your consumer base through social media channels, you are in a strong position to portray your positive image as a brand. With more realistic data on your hands, you could develop strategies more effectively and make realistic goals for your brand’s improvement. Social media insights also allows marketers to create highly targeted and custom marketing messages – thus leading to better likelihood of sales conversion.

Monitoring your Competition

Web scraping helps you realize where your brand stands in the market among the competition. The actual penetration of your brand in the targeted segment helps in getting a clear picture of your present business scenario. Through careful removal of competition in your concerned business category, you could strengthen your brand image.

Staying Informed

When your brand monitoring team is keeping track of all social media channels, it becomes easier for you to stay informed about latest comments about your business on sites like Facebook, Twitter and social forums etc. You could have deep knowledge about the consumer behavior related to your brand and your competitors on these web destinations.

Improved Consumer Satisfaction and Sales

Reputation tracking done through web scraping helps in generating planned response at times of crisis. It also mends the communication gap between consumer and the brand, hence improving the consumer satisfaction. This automatically translates into trust building and brand loyalty improving your brand’s sales.

To sign off

By granting opportunities to monitor your social media data, web scraping is undoubtedly helping retail businesses take a significant step towards perfect branding. If you are one of the key players in this sector, there’s reason for celebration ahead!

Source: https://www.promptcloud.com/blog/How-Web-Scraping-for-Brand-Monitoring-is-used-in-Retail-Sector

Monday, 29 August 2016

Why is a Web scraping service better than Scraping tools

Why is a Web scraping service better than Scraping tools

Web scraping has been making ripples across various industries in the last few years. Newer businesses can employ web scraping to gain quick market insights and equip themselves to take on their competitors. This works like clockwork if you know how to do the analysis right. Before we jump into that, there is the technical aspect of web scraping. Should your company use a scraping tool to get the required data from the web? Although this sounds like an easy solution, there is more to it than what meets the eye. We explain why it’s better to go with a dedicated web scraping service to cover your data acquisition needs rather than going by the scraping tool route.

Cost is lowered

Although this might come as a surprise, the cost of getting data from employing a data scraping tool along with an IT personnel who can get it done would exceed the cost of a good subscription based web scraping service. Not every company has the necessary resources needed to run web scraping in-house. By depending on a Data service provider, you will save the cost of software, resources and labour required to run web crawling in the firm. Besides, you will also end up having more time and less worries. More of your time and effort can therefore go into the analysis part which is crucial to you as a business owner.

Accessibility is high with a service

Multifaceted websites make it difficult for the scraping tools to extract data. A good web scraping service on the other hand can easily deal with bottlenecks in the scraping process when it may arise. Websites to be scraped often undergo changes in their structure which calls for modification of the crawler accordingly. Unlike a scraping tool, a dedicated service will be able to extract data from complex sites that use Ajax, Javascript and the like. By going with a subscription based service, you are doing yourself the favour of not being involved in this constant headache.

Accuracy in results

A DIY scraping tool might be able to get you data, but the accuracy and relevance of the acquired data will vary. You might be able to get it right with a particular website, but that might not be the case with another. This gives uncertainty to the results of your data acquisition and could even be disastrous for your business. On the other hand, a good scraping service will give you highly refined data which is in a ready to consume form.

Outcomes are instant with a service

Considering the high resource requirements of the web scraping process, your scraping tool is likely to be much slower than a reputed service that has got the right infrastructure and resources to scrape data from the web efficiently. It might not be feasible for your firm to acquire and manage the same setup since that could affect the focus of your business.

Tidying up of Data is an exhausting process

Web scrapers collect data into a dump file which would be huge in size. You will have to do a lot of tidying up in this to get data in a usable format. With the scraping tools route, you would be looking for more tools to clean up the data collected. This is a waste of time and effort that you could use in much better aspects of your business. Whereas with a web scraping service, you won’t have to worry about cleaning up of the data as it comes with the service. You get the data in a plug and use format which gives you more time to do better things.

Many sites have policies for data scraping

Sometimes, websites that you want to scrape data from might have policies discouraging the act. You wouldn’t want to act against their policies being ignorant of their existence and get into legal trouble. With a web scraping service, you don’t have to worry about these. A well-established data scraping provider will definitely follow the rules and policies set by the website. This would mean you can be relieved of such worries and go ahead with finding trends and ideas from the data that they provide.

More time to analyse the data

This is so far the best advantage of going with a scraping service rather than a tool. Since all the things related to data acquisition is dealt by the scraping service provider, you would have more time for analysing and deriving useful business decisions from this data. Being the business owner, analysing the data with care should be your highest priority. Since using a scraping tool to acquire data will cost you more time and effort, the analysis part is definitely going to suffer which defies your whole purpose.

Bottom line

It is up to you to choose between a web scraping tool and a dedicated scraping service. Being the business owner, it i s much better for you to stay away from the technical aspects of web scraping and focus on deriving a better business strategy from the data. When you have made up your mind to go with a data scraping service, it is important to choose the right web scraping service for maximum benefits.

Source: https://www.promptcloud.com/blog/web-scraping-services-better-than-scraping-tools

Monday, 22 August 2016

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence

Business Intelligence has become a very important activity in the business arena irrespective of the domain due to the fact that managers need to analyze comprehensively in order to face the challenges.

Data sourcing, data analysing, extracting the correct information for a given criteria, assessing the risks and finally supporting the decision making process are the main components of BI.

In a business perspective, core stakeholders need to be well aware of all the above stages and be crystal clear on expectations. The person, who is being assigned with the role of Business Analyst (BA) for the BI initiative either from the BI solution providers' side or the company itself, needs to take the full responsibility on assuring that all the above steps are correctly being carried out, in a way that it would ultimately give the business the expected leverage. The management, who will be the users of the BI solution, and the business stakeholders, need to communicate with the BA correctly and elaborately on their expectations and help him throughout the process.

Data sourcing is an initial yet crucial step that would have a direct impact on the system where extracting information from multiple sources of data has to be carried out. The data may be on text documents such as memos, reports, email messages, and it may be on the formats such as photographs, images, sounds, and they can be on more computer oriented sources like databases, formatted tables, web pages and URL lists. The key to data sourcing is to obtain the information in electronic form. Therefore, typically scanners, digital cameras, database queries, web searches, computer file access etc, would play significant roles. In a business perspective, emphasis should be placed on the identification of the correct relevant data sources, the granularity of the data to be extracted, possibility of data being extracted from identified sources and the confirmation that only correct and accurate data is extracted and passed on to the data analysis stage of the BI process.

Business oriented stake holders guided by the BA need to put in lot of thought during the analyzing stage as well, which is the second phase. Synthesizing useful knowledge from collections of data should be done in an analytical way using the in-depth business knowledge whilst estimating current trends, integrating and summarizing disparate information, validating models of understanding, and predicting missing information or future trends. This process of data analysis is also called data mining or knowledge discovery. Probability theory, statistical analysis methods, operational research and artificial intelligence are the tools to be used within this stage. It is not expected that business oriented stake holders (including the BA) are experts of all the above theoretical concepts and application methodologies, but they need to be able to guide the relevant resources in order to achieve the ultimate expectations of BI, which they know best.

Identifying relevant criteria, conditions and parameters of report generation is solely based on business requirements, which need to be well communicated by the users and correctly captured by the BA. Ultimately, correct decision support will be facilitated through the BI initiative and it aims to provide warnings on important events, such as takeovers, market changes, and poor staff performance, so that preventative steps could be taken. It seeks to help analyze and make better business decisions, to improve sales or customer satisfaction or staff morale. It presents the information that manager's need, as and when they need it.

In a business sense, BI should go several steps forward bypassing the mere conventional reporting, which should explain "what has happened?" through baseline metrics. The value addition will be higher if it can produce descriptive metrics, which will explain "why has it happened?" and the value added to the business will be much higher if predictive metrics could be provided to explain "what will happen?" Therefore, when providing a BI solution, it is important to think in these additional value adding lines.

Data warehousing

In the context of BI, data warehousing (DW) is also a critical resource to be implemented to maximize the effectiveness of the BI process. BI and DW are two terminologies that go in line. It has come to a level where a true BI system is ineffective without a powerful DW, in order to understand the reality behind this statement, it's important to have an insight in to what DW really is.

A data warehouse is one large data store for the business in concern which has integrated, time variant, non volatile collection of data in support of management's decision making process. It will mainly have transactional data which would facilitate effective querying, analyzing and report generation, which in turn would give the management the required level of information for the decision making.

The reasons to have BI together with DW

At this point, it should be made clear why a BI tool is more effective with a powerful DW. To query, analyze and generate worthy reports, the systems should have information available. Importantly, transactional information such as sales data, human resources data etc. are available normally in different applications of the enterprise, which would obviously be physically held in different databases. Therefore, data is not at one particular place, hence making it very difficult to generate intelligent information.

The level of reports expected today, are not merely independent for each department, but managers today want to analyze data and relationships across the enterprise so that their BI process is effective. Therefore, having data coming from all the sources to one location in the form of a data warehouse is crucial for the success of the BI initiative. In a business viewpoint, this message should be passed and sold to the managements of enterprises so that they understand the value of the investment. Once invested, its gains could be achieved over several years, in turn marking a high ROI.

Investment costs for a DW in the short term may look quite high, but it's important to re-iterate that the gains are much higher and it will span over many years to come. It also reduces future development cost since with the DW any requested report or view could be easily facilitated. However, it is important to find the right business sponsor for the project. He or she needs to communicate regularly with executives to ensure that they understand the value of what's being built. Business sponsors need to be decisive, take an enterprise-wide perspective and have the authority to enforce their decisions.

Process

Implementation of a DW itself overlaps with some phases of the above explained BI process and it's important to note that in a process standpoint, DW falls in to the first few phases of the entire BI initiative. Gaining highly valuable information out of DW is the latter part of the BI process. This can be done in many ways. DW can be used as the data repository of application servers that run decision support systems, management Information Systems, Expert systems etc., through them, intelligent information could be achieved.

But one of the latest strategies is to build cubes out of the DW and allow users to analyze data in multiple dimensions, and also provide with powerful analytical supporting such as drill down information in to granular levels. Cube is a concept that is different to the traditional relational 2-dimensional tabular view, and it has multiple dimensions, allowing a manager to analyze data based on multiple factors, and not just two factors. On the other hand, it allows the user to select whatever the dimension he wish to choose for analyzing purposes and not be limited by one fixed view of data, which is called as slice & dice in DW terminology.

BI for a serious enterprise is not just a phase of a computerization process, but it is one of the major strategies behind the entire organizational drivers. Therefore management should sit down and build up a BI strategy for the company and identify the information they require in each business direction within the enterprise. Given this, BA needs to analyze the organizational data sources in order to build up the most effective DW which would help the strategized BI process.

High level Ideas on Implementation

At the heart of the data warehousing process is the extract, transform, and load (ETL) process. Implementation of this merely is a technical concern but it's a business concern to make sure it is designed in such a way that it ultimately helps to satisfy the business requirements. This process is responsible for connecting to and extracting data from one or more transactional systems (source systems), transforming it according to the business rules defined through the business objectives, and loading it into the all important data model. It is at this point where data quality should be gained. Of the many responsibilities of the data warehouse, the ETL process represents a significant portion of all the moving parts of the warehousing process.

Creation of a powerful DW depends on the correctness of data modeling, which is the responsibility of the database architect of the project, but BA needs to play a pivotal role providing him with correct data sources, data requirements and most importantly business dimensions. Business Dimensional modeling is a special method used for DW projects and this normally should be carried out by the BA and from there onwards technical experts should take up the work. Dimensions are perspectives specific to a business that could be used for analysis purposes. As an example, for a sales database, the dimensions could include Product, Time, Store, etc. Obviously these dimensions differ from one business to another and hence for each DW initiative those dimensions should be correctly identified and that could be very well done by a person who has experience in the DW domain and understands the business as well, making it apparent that DW BA is the person responsible.

Each of the identified dimensions would be turned in to a dimension table at the implementation phase, and the objective of the above explained ETL process is to fill up these dimension tables, which in turn will be taken to the level of the DW after performing some more database activities based on a strong underlying data model. Implementation details are not important for a business stakeholder but being aware of high level process to this level is important so that they are also on the same pitch as that of the developers and can confirm that developers are actually doing what they are supposed to do and would ultimately deliver what they are supposed to deliver.

Security is also vital in this regard, since this entire effort deals with highly sensitive information and identification of access right to specific people to specific information should be correctly identified and captured at the requirements analysis stage.

Advantages

There are so many advantages of BI system. More presentation of analytics directly to the customer or supply chain partner will be possible. Customer scores, customer campaigns and new product bundles can all be produced from analytic structures resulting in high customer retention and creation of unique products. More collaboration within information can be achieved from effective BI. Rather than middle managers getting great reports and making their own areas look good, information will be conveyed into other functions and rapidly shared to create collaborative decisions increasing the efficiency and accuracy. The return on human capital will be greatly increased.

Managers at all levels will save their time on data analysis, and hence saving money for the enterprise, as the time of managers is equal to money in a financial perspective. Since powerful BI would enable monitoring internal processes of the enterprises more closely and allow making them more efficient, the overall success of the organization would automatically grow. All these would help to derive a high ROI on BI together with a strong DW. It is a common experience to notice very high ROI figures on such implementations, and it is also important to note that there are many non-measurable gains whilst we consider most of the measurable gains for the ROI calculation. However, at a stage where it is intended to take the management buy-in for the BI initiative, it's important to convert all the non measurable gains in to monitory values as much as possible, for example, saving of managers time can be converted in to a monitory value using his compensation.

The author has knowledge in both Business and IT. Started career as a Software Engineer and moved to work in the business analysis area of a premier US based software company.

Source: http://ezinearticles.com/?Business-Intelligence-and-Data-Warehousing-in-a-Business-Perspective&id=35640

Tuesday, 9 August 2016

Getting Data from the Web

Getting Data from the Web

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.
What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.
Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.
What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

Badly formatted HTML code with little or no structural information e.g. older government websites.

Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

Session-based systems that use browser cookies to keep track of what the user has been doing.

A lack of complete item listings and possibilities for wildcard search.

Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.
Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.
How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.
The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

  # Look for all rows in the table
  # Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

  import scraperwiki
  from lxml import html

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

  url = "http://www-news.iaea.org/EventList.aspx"
  doc_text = scraperwiki.scrape(url)
  doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

  for row in doc.cssselect("#tblEvents tr"):
  link_in_header = row.cssselect("h4 a").pop()
  event_title = link_in_header.text
  print event_title

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

  figs/incoming/04-DD.png
  Figure 58. A scraper in action (ScraperWiki)

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

Can you find the address for the link in each event’s title?

Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html

Thursday, 4 August 2016

What's difference between web scraping and data mining?

What's difference between web scraping and data mining?

Data mining: automatically searching large stores of data for patterns. How you get the data is irrelevant, only how you analyze it. Data mining involves the use of complex statistical algorithms.

Screen/web scraping is a method for extracting textual characters from screens so that they could be analyzed. Commonly, it is used to extract characters from websites (web scraping), though not exclusively. This method for gathering data is direct, either through looking at websites' html code or visual abstraction techniques.

Web scraping could be a source for data mining but it doesn't have to be because your data may not come from the web.

Data Mining can take any source of data and if that process requires data available from the public web then web scraping could be one of the methods to get such data.
You can also perform web scraping. without mining it later.

The reality is that a lot of data today IS on the web and a lot of data mining does use web related data.

Web scraping is getting data from web. Data mining is getting knowledge from data.

Source: https://www.quora.com/Whats-difference-between-web-scraping-and-data-mining

Monday, 1 August 2016

Scraping data from LinkedIn

Scraping data from LinkedIn

How to scrape data from LinkedIn public profile for marketing purposes?

You can scrape data from a LinkedIn public profile using data scraper software. LinkedIn data extraction is most beneficial for marketers and most medium size companies rely on LinkedIn for their marketing purpose.

I would recommend you to use "LinkedIn Lead Extractor" software, which helps to quickly scrape public profiles from LinkedIn. With this tool your can scrape profile link, First Name, Last Name, Email, Phone Address, Twitter id, Yahoo messenger id, Skype Id, Google Talk ID, Job Role, Company Name, Address, Country, Connections. This company has built this tool specially for LinkedIn marketers who are not satisfied with their drop ship supplier's digital data.

LinkedIn advance search provides you the targeted customers profiles list with your requirements like country, country, city, company, job title, and much more.

In few weeks you can developed new ways to set-up differently the sales teams and create a much more technologic environment in the strategy department. An internal platform that generated targeted leads can be of a very big help. You can easily execute go to market to any area or city in so much little time compared with some years ago.

Source: http://www.ahmadsoftware.com/blogs/4/scraping-data-from-linkedin.html

Monday, 11 July 2016

Web Scraping Best Practices

Extracting data from the World Wide Web has several challenges as more webmasters are working day and night to lower cases of scraping and crawling of their data in order to survive in the competitive world. There are various other problems you may face when web scraping and most of them can be avoided by adapting and implementing certain web scraping best practices as discussed in this article.

Have knowledge of the scraping tools

Acquiring adequate knowledge of hurdles that may be encountered during web scraping, you will be able to have a smooth web scraping experience and be on the safe side of the law. Conduct a thorough research on the types of tools you will use for scraping and crawling. Firsthand knowledge on these tools will help you find the data you need without being blocked.

Proper proxy software that acts as the middle party works well when you know how to work around HTTP and HTML protocols. Use tools that can change crawling patterns, URLs and data retrieved even when you are crawling on one domain. This will help you abide to the rules and regulations that come with web scraping activities and escaping any legal issues.

Conduct your scraping activities during off-peak hours

You may opt to extract data during times that less people have access for instance over the weekends, during late night hours, public holidays among others. Visiting a website on several instances to retrieve the same type of data is a waste of bandwidth. It is always advisable to download the entire site content to your computer and thereafter you can access it whenever need arises.

Hide your scrapping activities

There is a thin line between ethical and unethical crawling hence you should completely evade being on the top user list of a particular website. Cover up your track as best as you can by making use of proxy IPs to avoid any legal problems. You may also use multiple IP addresses or VPN services to conceal your scrapping activities and lower chances of landing on a website’s blacklist.

Website owners today are very protective of their data and any other information existing under their unique url. Be keen when going through the terms and conditions indicated by websites as they may consider crawling as an infringement of their privacy. Simple etiquette goes a long way. Your web scraping efforts will be fruitful if the site owner supports the idea of sharing data.

Keep record of your activities

Web scraping involves large amount of data.Due to this you may not always remember each and every piece of information you have acquired, gathering statistics will help you monitor your activities.

Load data in phases

Web scraping demands a lot of patience from you when using the crawlers to get needed information. Take the process in a slow manner by loading data one piece at a time. Several parallel request to the same domain can crush the entire site or retrace the scrapping attempts back to your local machine.

Loading data small bits will save you the hustle of scrapping afresh in case that your activity has been interrupted because you will have already stored part of the data required. You can reduce the loading data on an individual domain through various techniques such as caching pages that you have scrapped to escape redundancy occurrences. Use auto throttling mechanisms to increase the amount of traffic to the website and pause for breaks between requests to prevent getting banned.

Conclusion

Through these few mentioned web scraping best practices you will be able to work around website and gather the data required as per clients’ request without major hurdles along the way. The ultimate goal of every web scraper is to be able to access vital information and at the same time remain on the good side of the law.

Source URl : http://nocodewebscraping.com/web-scraping-best-practices/

Sunday, 10 July 2016

How to Avoid the Most Common Traps in Web Scraping?

A lot of industries are successfully using web scraping for creating massive data banks of applicable and actionable data which can be used on every day basis for further business interests as well as offer superior services to the customers. However, web scraping does have its own roadblocks and problems.

Using automated scraping, you could face many common problems. The web scraping spiders or programs present a definite picture to their targeted websites. Then, they use this behavior for making out between the human users as well as web scraping spiders. According to those details, a website can employ a certain web scraping traps for stopping your efforts. Here are some of the most common traps:

How Can You Avoid These Traps?

Some measures, which you can use to make sure that you avoid general web scraping traps include:

• Begin with caching pages, which you already have crawled and make sure that you are not required to load them again.
• Find out if any particular website, which you try to scratch has any particular dislikes towards the web scraping tools.
• Handle scraping in moderate phases as well as take the content required.
• Take things slower and do not overflow the website through many parallel requests, which put strain on the resources.
• Try to minimize the weight on every sole website, which you visit to scrape.
• Use a superior web scraping tool that can save and test data, patterns and URLs.
• Use several IP addresses to scrape efforts or taking benefits of VPN services and proxy servers. It will assist to decrease the dangers of having trapped as well as blacklisted through a website.

Source URL :http://www.3idatascraping.com/category/web-data-scraping

Friday, 8 July 2016

Scraping the Royal Society membership list

To a data scientist any data is fair game, from my interest in the history of science I came across the membership records of the Royal Society from 1660 to 2007 which are available as a single PDF file. I’ve scraped the membership list before: the first time around I wrote a C# application which parsed a plain text file which I had made from the original PDF using an online converting service, looking back at the code it is fiendishly complicated and cluttered by boilerplate code required to build a GUI. ScraperWiki includes a pdftoxml function so I thought I’d see if this would make the process of parsing easier, and compare the ScraperWiki experience more widely with my earlier scraper.

The membership list is laid out quite simply, as shown in the image below, each member (or Fellow) record spans two lines with the member name in the left most column on the first line and information on their birth date and the day they died, the class of their Fellowship and their election date on the second line.

Later in the document we find that information on the Presidents of the Royal Society is found on the same line as the Fellow name and that Royal Patrons are formatted a little differently. There are also alias records where the second line points to the primary record for the name on the first line.

pdftoxml converts a PDF into an xml file, wherein each piece of text is located on the page using spatial coordinates, an individual line looks like this:

<text top="243" left="135" width="221" height="14" font="2">Abbot, Charles, 1st Baron Colchester </text>

This makes parsing columnar data straightforward you simply need to select elements with particular values of the “left” attribute. It turns out that the columns are not in exactly the same positions throughout the whole document, which appears to have been constructed by tacking together the membership list A-J with that of K-Z, but this can easily be resolved by accepting a small range of positions for each column.

Attempting to automatically parse all 395 pages of the document reveals some transcription errors: one Fellow was apparently elected on 16th March 197 – a bit of Googling reveals that the real date is 16th March 1978. Another fellow is classed as a “Felllow”, and whilst most of the dates of birth and death are separated by a dash some are separated by an en dash which as far as the code is concerned is something completely different and so on. In my earlier iteration I missed some of these quirks or fixed them by editing the converted text file. These variations suggest that the source document was typed manually rather than being output from a pre-existing database. Since I couldn’t edit the source document I was obliged to code around these quirks.

ScraperWiki helpfully makes putting data into a SQLite database the simplest option for a scraper. My handling of dates in this version of the scraper is a little unsatisfactory: presidential terms are described in terms of a start and end year but are rendered 1st January of those years in the database. Furthermore, in historical documents dates may not be known accurately so someone may have a birth date described as “circa 1782? or “c 1782?, even more vaguely they may be described as having “flourished 1663-1778? or “fl. 1663-1778?. Python’s default datetime module does not capture this subtlety and if it did the database used to store dates would need to support it too to be useful – I’ve addressed this by storing the original life span data as text so that it can be analysed should the need arise. Storing dates as proper dates in the database, rather than text strings means we can query the database using date based queries.

ScraperWiki provides an API to my dataset so that I can query it using SQL, and since it is public anyone else can do this too. So, for example, it’s easy to write queries that tell you the the database contains 8019 Fellows, 56 Presidents, 387 born before 1700, 3657 with no birth date, 2360 with no death date, 204 “flourished”, 450 have birth dates “circa” some year.

I can count the number of classes of fellows:

Select distinct class,count(*) from `RoyalSocietyFellows` group by class

Make a table of all of the Presidents of the Royal Society

select * from `RoyalSocietyFellows` where StartPresident not null order by StartPresident desc

…and so on. These illustrations just use the ScraperWiki htmltable export option to display the data as a table but equally I could use similar queries to pull data into a visualisation.

Comparing this to my earlier experience, the benefits of using ScraperWiki are:

•    Nice traceable code to provide a provenance for the dataset;

•    Access to the pdftoxml library;

•    Strong encouragement to “do the right thing” and put the data into a database;

•    Publication of the data;

•    A simple API giving access to the data for reuse by all.

My next target for ScraperWiki may well be the membership lists for the French Academie des Sciences, a task which proved too complex for a simple plain text scraper…

Sources URL :                             http://yellowpagesdatascraping.blogspot.in/2015/06/scraping-royal-society-membership-list.html