Saturday, 28 September 2013

Visual Web Ripper: Using External Input Data Sources

Sometimes it is necessary to use external data sources to provide parameters for the scraping process. For example, you have a database with a bunch of ASINs and you need to scrape all product information for each one of them. As far as Visual Web Ripper is concerned, an input data source can be used to provide a list of input values to a data extraction project. A data extraction project will be run once for each row of input values.

An input data source is normally used in one of these scenarios:

    To provide a list of input values for a web form
    To provide a list of start URLs
    To provide input values for Fixed Value elements
    To provide input values for scripts

Visual Web Ripper supports the following input data sources:

    SQL Server Database
    MySQL Database
    OleDB Database
    CSV File
    Script (A script can be used to provide data from almost any data source)

To see it in action you can download a sample project that uses an input CSV file with Amazon ASIN codes to generate Amazon start URLs and extract some product data. Place both the project file and the input CSV file in the default Visual Web Ripper project folder (My Documents\Visual Web Ripper\Projects).

For further information please look at the manual topic, explaining how to use an input data source to generate start URLs.


Source: http://extract-web-data.com/visual-web-ripper-using-external-input-data-sources/

Friday, 27 September 2013

Scraping Amazon.com with Screen Scraper

Let’s look how to use Screen Scraper for scraping Amazon products having a list of asins in external database.

Screen Scraper is designed to be interoperable with all sorts of databases and web-languages. There is even a data-manager that allows one to make a connection to a database (MySQL, Amazon RDS, MS SQL, MariaDB, PostgreSQL, etc), and then the scripting in screen-scraper is agnostic to the type of database.

Let’s go through a sample scrape project you can see it at work. I don’t know how well you know Screen Scraper, but I assume you have it installed, and a MySQL database you can use. You need to:

    Make sure screen-scraper is not running as workbench or server
    Put the Amazon (Scraping Session).sss file in the “screen-scraper enterprise edition/import” directory.
    Put the mysql-connector-java-5.1.22-bin.jar file in the “screen-scraper enterprise edition/lib/ext” directory.
    Create a MySQL database for the scrape to use, and import the amazon.sql file.
    Put the amazon.db.config file in the “screen-scraper enterprise edition/input” directory and edit it to contain proper settings to connect to your database.
    Start the screen scraper workbench

Since this is a very simple scrape, you just want to run it in the workbench (most of the time you want to run scrapes in server mode). Start the workbench, and you will see the Amazon scrape in there, and you can just click the “play” button.

Note that a breakpoint comes up for each item. It would be easy to save the scraped details to a database table or file if you want. Also see in the database the “id_status” changes as each item is scraped.

When the scrape is run, it looks in the database for products marked “not scraped”, so when you want to re-run the scrapes, you need to:

UPDATE asin
SET `id_status` = 0

Have a nice scraping! ))

P.S. We thank Jason Bellows from Ekiwi, LLC for such a great tutorial.


Source: http://extract-web-data.com/scraping-amazon-com-with-screen-scraper/

Thursday, 26 September 2013

Using External Input Data in Off-the-shelf Web Scrapers

There is a question I’ve wanted to shed some light upon for a long time already: “What if I need to scrape several URL’s based on data in some external database?“.

For example, recently one of our visitors asked a very good question (thanks, Ed):

    “I have a large list of amazon.com asin. I would like to scrape 10 or so fields for each asin. Is there any web scraping software available that can read each asin from a database and form the destination url to be scraped like http://www.amazon.com/gp/product/{asin} and scrape the data?”

This question impelled me to investigate this matter. I contacted several web scraper developers, and they kindly provided me with detailed answers that allowed me to bring the following summary to your attention:
Visual Web Ripper

An input data source can be used to provide a list of input values to a data extraction project. A data extraction project will be run once for each row of input values. You can find the additional information here.
Web Content Extractor

You can use the -at”filename” command line option to add new URLs from TXT or CSV file:

    WCExtractor.exe projectfile -at”filename” -s

projectfile: the file name of the project (*.wcepr) to open.
filename – the file name of the CSV or TXT file that contains URLs separated by newlines.
-s – starts the extraction process

You can find some options and examples here.
Mozenda

Since Mozenda is cloud-based, the external data needs to be loaded up into the user’s Mozenda account. That data can then be easily used as part of the data extracting process. You can construct URLs, search for strings that match your inputs, or carry through several data fields from an input collection and add data to it as part of your output. The easiest way to get input data from an external source is to use the API to populate data into a Mozenda collection (in the user’s account). You can also input data in the Mozenda web console by importing a .csv file or importing one through our agent building tool.

Once the data is loaded into the cloud, you simply initiate building a Mozenda web agent and refer to that Data list. By using the Load page action and the variable from the inputs, you can construct a URL like http://www.amazon.com/gp/product/%asin%.
Helium Scraper

Here is a video showing how to do this with Helium Scraper:


The video shows how to use the input data as URLs and as search terms. There are many other ways you could use this data, way too many to fit in a video. Also, if you know SQL, you could run a query to get the data directly from an external MS Access database like
SELECT * FROM [MyTable] IN "C:\MyDatabase.mdb"

Note that the database needs to be a “.mdb” file.
WebSundew Data Extractor
Basically this allows using input data from external data sources. This may be CSV, Excel file or a Database (MySQL, MSSQL, etc). Here you can see how to do this in the case of an external file, but you can do it with a database in a similar way (you just need to write an SQL script that returns the necessary data).
In addition to passing URLs from the external sources you can pass other input parameters as well (input fields, for example).
Screen Scraper

Screen Scraper is really designed to be interoperable with all sorts of databases. We have composed a separate article where you can find a tutorial and a sample project about scraping Amazon products based on a list of their ASINs.


Source: http://extract-web-data.com/using-external-input-data-in-off-the-shelf-web-scrapers/

Wednesday, 25 September 2013

Handy Web Extractor

Handy Web Extractor is a simple tool for everyday web content monitoring. It will periodically download the web page, extract the necessary content and display it in the window on your desktop. One may consider it as the data extraction software, taking its own nitch in the scraping software and plugins.

What is it for?

Have you ever needed to track some web site changes without visiting it again and again? If so, you may find this program useful. The idea is simple: it periodically downloads the specified web page, extracts the part you need and displays it for you in a small window. You can easily move, resize, hide or show this window according to your needs.

It’s totally free and available for download.
How does it work?

After installing the program you will see the following window:


At the top of the window (on white background) you may see the extracted web page itself (in this case it’s a header of this article) followed by program settings (on light yellow background). If you don’t see the program settings click on the gear icon (if you want to hide them click it again).

Settings available:

    Web Site URL – type the URL of the target web-page you want to scrape
    Extract using XPath – use this option if you want to specify the portion of the web-page using XPath expression
    Extract using Regex – use this option if you want to specify the portion of the web-page using Regex expression
    Update every N min - to specify how often the program will scrape the target website
    Autostart – check this box if you want the program to start automatically when Windows starts

After you change either the web site URL or XPath/Regex expression click the “Update now” link at the bottom to rescrape the web site.

You may always access this window via the “magnet” icon in the system tray. Click the icon to show/hide the window and right-click it to display an additional menu.

That’s it. The only thing I’d like to mention here is that the program remembers all your settings right away (including window position and size) and you don’t need to “save” them manually.
Usage Examples
Stocks

You can use Handy Web Extractor as a stock tracker:


Hot news

Here is an example of how to monitor hot news using Handy Web Extractor:

Number Tracker

With Handy Web Extractor you can easily extract a single number using Regex expressions. Here is an example of how to track your program downloads:

Here is how it may look on your desktop:

Picture of the day

You may even use Handy Web Extractor to display a picture of the day from any web site :) :



Source: http://extract-web-data.com/handy-web-extractor/

Tuesday, 24 September 2013

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Monday, 23 September 2013

Data Management Services

In recent studies it has been revealed that any business activity has astonishing huge volumes of data, hence the ideas has to be organized well and can be easily gotten when need arises. Timely and accurate solutions are important in facilitating efficiency in any business activity. With the emerging professional outsourcing and data organizing companies nowadays many services are offered that matches the various kinds of managing the data collected and various business activities. This article looks at some of the benefits that accrue of offered by the professional data mining companies.

Entering of data

These kinds of services are quite significant since they help in converting the data that is needed in high ideal and format that is digitized. In internet some of this data can found that is original and handwritten. In printed paper documents and or text are not likely to contain electronic or needed formats. The best example in this context is books that need to be converted to e-books. In insurance companies they also depend on this process in processing the claims of insurance and at the same time apply to the law firms that offer support to analyze and process legal documents.

EDC

That is referred to as electronic data. This method is mostly used by clinical researchers and other related organization in medical. The electronic data and capture methods are used in the utilization in managing trials and research. The data mining and data management services are given in upcoming databases for studies. The ideas contained can easily be captured, other services being done and the survey taken.

Data changing

This is the process of converting data found in one format to another. Data extraction process often involves mining data from an existing system, formatting it, cleansing it and can be installed to enhance both availability and retrieving of information easily. Extensive testing and application are the requirements of this process. The service offered by data mining companies includes SGML conversion, XML conversion, CAD conversion, HTML conversion, image conversion.

Managing data service

In this service it involves the conversion of documents. It is where one character of a text may need to be converted to another. If we take an example it is easy to change image, video or audio file formats to other applications of the software that can be played or displayed. In indexing and scanning is where the services are mostly offered.

Data extraction and cleansing

Significant information and sequences from huge databases and websites extraction firms use this kind of service. The data harvested is supposed to be in a productive way and should be cleansed to increase the quality. Both manual and automated data cleansing services are offered by data mining organizations. This helps to ensure that there is accuracy, completeness and integrity of data. Also we keep in mind that data mining is never enough.

Web scraping, data extraction services, web extraction, imaging, catalog conversion, web data mining and others are the other management services offered by data mining organization. If your business organization needs such services here is one that can be of great significance that is web scraping and data mining




Source: http://ezinearticles.com/?Data-Management-Services&id=7131758

Friday, 20 September 2013

Outsourcing Data Entry Services

Data or raw information is the backbone of any industry or business organization. However, raw data is seldom useful in its pure form. For it to be of any use, data has to be recorded properly and organized in a particular manner. Only then can data be processed. That is why it is important to ensure accurate data entry. But because of the unwieldy nature of data, feeding data is a repetitive and cumbersome job and it requires heavy investment, both in terms of time and energy from staff. At the same time, it does not require a high level of technical expertise. Due to these factors, data entry can safely be outsourced, enabling companies to devote their time and energy on tasks that enhance their core competence.

Many companies, big and small, are therefore enhancing their productivity by outsourcing the endless monotonous tasks that tend to cut down the organization's productivity. In times to come, outsourcing these services will become the norm and the volume of work that is outsourced will multiply. The main reason for these kinds of development is the Internet. Web based customer service and instant client support has made it possible for service providers to act as one stop business process outsourcing partners to parent companies that require support.

Data entry services are not all alike. Different clients have different demands. While some clients may require recording information coupled with document management and research, others may require additional services like form processing or litigation support. Data entry itself could be from various sources. For instances, sometimes information may need to be typed out from existing documents while at other times, data needs to be extracted from images or scanned documents. To rise up to these challenges, service providers who offer these services must have the expertise and the software to ensure rapid and accurate data entry. That is why it is important to choose your service provider with a lot of care.

Before hiring your outsourcing partner, you need to ask yourself the following questions.

* What kind of reputation does the company enjoy? Do they have sufficient years of experience? What kind of history and background does the company enjoy?

* Do they have a local management arm that you can liaise with on a regular basis?

* Do the service personnel understand your requirements and can they handle them effectively?

* What are the steps taken by the company to ensure that there is absolutely no compromise in confidentiality and security while dealing with vital confidential data?

* Is there a guarantee in place?

* What about client references?

The answers to these questions will help you identify the right partner for outsourcing your data entry service requirements.



Source: http://ezinearticles.com/?Outsourcing-Data-Entry-Services&id=3568373

Thursday, 19 September 2013

Data Mining Social Networks, Smart Phone Data, and Other Data Base, Yet Maintaining Privacy

Is it possible to data mine social networks in such a way to does not hurt the privacy of the individual user, and if so, can we justify doing such? It wasn't too long ago the CEO of Google stated that it was important that they were able to keep data of Google searches so they can find disease, flu, and food born medical clusters. By using this data and studying the regions in the searches to help fight against outbreaks of diseases, or food borne illnesses in the distribution system. This is one good reason to store the data, and collect it for research, as long as it is anonomized, then theoretically no one is hurt.

Unfortunately, this also scares the users, because they know if the searches are indeed stored, this data can be used against them in the future, for instance, higher insurance rates, bombardment of advertising, or get them put onto some sort of future government "thought police" watch-list. Especially considering all the political correctness, and new ways of defining hate speech, bullying, and what is, what isn't, and what might be a domestically home-grown terrorist. The future concept of the thought police is very scary to most folks.

Usually if you want to collect data from a user, you have to give them something back in return, and therefore they are willing to sign away certain privacy rights on that data in trade for the use of such services; such as on their cell phone, perhaps a free iPhone app or a virtual product in an online social network.

Artificially Intelligent Search Features

It is no surprised that AI search features are getting smarter, even able to anticipate your next search question, or what you are really trying to ask, even second guessing your question for instance. Now then, let's discuss this for a moment. Many folks very much enjoy the features of Amazon.com search features, which use artificial intelligence to recommend potential other books, which they might be interested in. And therefore the user probably does not mind giving away information about itself, for this upgraded service or ability, nor would the person mind having cookies put onto their Web browser.

Nevertheless, these types of systems are always exploited for other purposes. For instance consider the Federal Trade Commission's do not call list, and consider how many corporations, political party organizations, and all of their affiliates and partners were able to bypass these rules due to the fact that the consumer or customer had bought something from them in the last six months. This is not what consumers or customers had in mind when they decided they wanted to have this "do not call list" and the resultant and response from the market place, well, it proves we cannot trust the telecommunication companies, their lobbyists, or the insiders within their group (many of which over the years have indeed been somehow connected to the intelligence agencies - AT&T - NSA Echelon for example.)

Now then, this article is in no way to be considered a conspiracy theory, it is just a known fact, yes national security does need access to such information, and often it might be relevant, catching bad guys, terrorists, spies, etc. The NSA is to protect the American People. However, when it comes to the telecommunication companies, their job is to protect shareholder's equity, maximize quarterly profits, expand their business models, and create new profit centers in their corporations.

Thus, such user data will be and has been exploited for future profits against the wishes of the consumer, without the consumer benefiting from free services for lower prices in any way. If there is an explained reason, trade-off, and a monetary consideration, the consumer might feel obliged to have additional calls bothering them while they are at home, additional advertising, and tracking of their preferences for ease of use and suggestions. What types of suggestions?

Well, there is a Starbucks two-blocks from here, turn right, then turn left and it is 200 yards, with parking available; "Sale on Frappachinos for gold-card holders today!" In this case the telecommunication company tracks your location, knows your preferences, and collects a small fee from Starbucks, and you get a free-phone, and 20% off your monthly 4G wireless fee. Is that something a consumer might want; when asked 75% of consumers or smart phone users say; yes. See that point?

In the future smart phones may have data transferred between them, rather than going through a given or closest cell tower. In other words, packets of information may go from your cell phone, to the next nearest cell phone, to another near cell phone, to the person which is intended to receive it. And the data passing through each mobile device, will not be able to read any of the information which was it is not assigned to receive as it wasn't sent to it. By using such a scheme telecommunication companies can expand their services without building more new cell towers, and therefore they can lower the price.

However, it also means that when you lay your cell phone on the table, and it is turned on it would be constantly passing data through it, data which is not yours, and you are not getting paid for that, even though you had to purchase the smart phone. But if the phone was given to you, with a large battery, so it wouldn't go dead during all those transmissions, you probably wouldn't care, as long as your data packets of information were indeed safe and no one else could read them.

This technology exists now, and is being discussed, and consider if you will that the whole strategy of networking smart cell phones or personal tech devices together is nothing new. For instance, the same strategies have been designed for satellites, and to use an analogy, this scheme is very similar to the strategies FedEx uses when it sends packages to the next nearest FedEx office if that is their destination, without sending all of the packages all the way across the country to the central Memphis sort, and then all the way back again. They are saving time, fuel, space, and energy, and if cell phones did this it would save the telecommunication companies mega bucks in the savings of building new cell towers.

As long as you got a free cell phone, which many of us do, unless we have the mega top of the line edition, and if they gave you a long-lasting free battery it is win-win for the user. You probably wouldn't care, and the telecommunication companies could most likely lower the cost of services, and not need to upgrade their system, because they can carry a lot more data, without hundreds of billions of dollars in future investments.

Also a net centric system like this is safer to disruption in the event of an emergency, when emergency communications systems take precedence, putting every cell phone user as secondary traffic at the cell towers, which means their calls may not even get through.

Next, the last thing the telecommunication company would want to do is to data mine that data, or those packets of information from people like a soccer mom calling her son waiting at the bus stop at school. And anyone with a cell phone certainly wouldn't want their packets of information being stolen from them and rerouted because someone near them hacked into the system and had a cell phone that was displaying all of their information.

You can see the problems with all this, but you can also see the incredible economies of scale by making each and every cell phone a transmitter and receiver, which it already is in principle anyway, at least now for all data you send and receive. In the new system, if all the data which is closest by is able to transfer through it, and send that data on its way. The receiving cell phone would wait for all the packets of data were in, and then display the information.

You can see why such a system also might cause people to have a problem with it because of what they call net neutrality. If someone was downloading a movie onto their iPad using a 3G or 4G wireless network, it could tie up all the cell phones nearby that were moving the data through them. In this case, it might upset consumers, but if that traffic could be somewhat delayed by priority based on an AI algorithm decision matrix, something simple, then such a tactic for packet distribution plan might allow for this to occur without disruption from the actual cell tower, meaning everyone would be better off. Therefore we all get information flow faster, more dispersed, and therefore safer from intruders. Please consider all this.





Source: http://ezinearticles.com/?Data-Mining-Social-Networks,-Smart-Phone-Data,-and-Other-Data-Base,-Yet-Maintaining-Privacy&id=4867112

Tuesday, 17 September 2013

The A B C D of Data Mining Services

If you are very new to the term 'data mining', let the meaning be explained to you. It is form of back office support services that are being offered by many call centers to analyze data from numerous resources and amalgamate them for some useful task. The business establishments in the present generation need to develop a strategy that helps them to cooperate with the market trends and allow them to perform well. The process of data mining is actually the retrieval process of essential and informative data that helps an organization to analyze the business perspectives and can further generate better interests in cutting cost, developing revenue and to acquire valuable data on business services/products.

It is a powerful analytical tool that permits the user to customize a wide range of data in different formats and categories as per their necessity. The data mining process is an integral part of a business plan for companies that need to undertake a diverse research on the customer building process. These analytical skills are generally performed by skilled industrial experts who assist the firms to accelerate their growth through the critical business activities. With a vast applicability in the present time, the back office support services with the data mining process is helping the businesses in understanding and predicting valuable information. Some of them include:

    Profiles of customers
    Customer buying behavior
    Customer buying trends
    Industry analysis

For a layman it is somewhat the process of processing some statistical data or methods. These processes are implemented with some specific tools that preform the following:

    Automated model scoring
    Business templates
    Computing target columns
    Database integration
    Exporting models to other applications
    Incorporating financial information

There are some benefits of Data Mining. Few of them are as follows:

    To understand the requirements of the customers which can help in efficient planning.
    Helps in minimizing risk and improve ROI.
    Generate more business and target the relevant market.
    Risk free outsourcing experience
    Provide data access to business analysts
    A better understanding of the demand supply graph
    Improve profitability by detect unusual pattern in sales, claims, transactions
    To cut down the expenses of Direct Marketing

Data mining is generally a part of the offshore back office services and outsourced to business establishments that require diverse data base on customers and their particular approach towards any service or product. For example banks, telecommunication companies, insurance companies, etc. require huge data base to promote their new policies. If you represent a similar company that needs appropriate data mining process then it is better that you outsource back office support services from a third party and fulfill your business goals with excellent results.

Katie Cardwell works as a senior sales and marketing analyst for a multinational call center company, based in United States of America. She takes care of all the business operations and analysis the back office support services that power an organization. Her extensive knowledge and expertise on Non -voice call center services such as Data Mining Services, Back office support services, etc, have helped many business players to stand with a straight spine and thus making a foothold in the data processing industry.




Source: http://ezinearticles.com/?The-A-B-C-D-of-Data-Mining-Services&id=6503339

Monday, 16 September 2013

Data Mining As a Process

The data mining process is also known as knowledge discovery. It can be defined as the process of analyzing data from different perspectives and then summarizing the data into useful information in order to improve the revenue and cut the costs. The process enables categorization of data and the summary of the relationships is identified. When viewed in technical terms, the process can be defined as finding correlations or patterns in large relational databases. In this article, we look at how data mining works its innovations, the needed technological infrastructures and the tools such as phone validation.

Data mining is a relatively new term used in the data collection field. The process is very old but has evolved over the time. Companies have been able to use computers to shift over the large amounts of data for many years. The process has been used widely by the marketing firms in conducting market research. Through analysis, it is possible to define the regularity of customers shopping. How the items are bought. It is also possible to collect information needed for the establishment of revenue increase platform. Nowadays, what aides the process is the affordable and easy disk storage, computer processing power and applications developed.

Data extraction is commonly used by the companies that are after maintaining a stronger customer focus no matter where they are engaged. Most companies are engaged in retail, marketing, finance or communication. Through this process, it is possible to determine the different relationships between the varying factors. The varying factors include staffing, product positioning, pricing, social demographics, and market competition.

A data-mining program can be used. It is important note that the data mining applications vary in types. Some of the types include machine learning, statistical, and neural networks. The program is interested in any of the following four types of relationships: clusters (in this case the data is grouped in relation to the consumer preferences or logical relationships), classes (in this the data is stored and finds its use in the location of data in the per-determined groups), sequential patterns (in this case the data is used to estimate the behavioral patterns and patterns), and associations (data is used to identify associations).

In knowledge discovery, there are different levels of data analysis and they include genetic algorithms, artificial neural networks, nearest neighbor method, data visualization, decision trees, and rule induction. The level of analysis used depends on the data that is visualized and the output needed.

Nowadays, data extraction programs are readily available in different sizes from PC platforms, mainframe, and client/server. In the enterprise-wide uses, size ranges from the 10 GB to more than 11 TB. It is important to note that two crucial technological drivers are needed and are query complexity and, database size. When more data is needed to be processed and maintained, then a more powerful system is needed that can handle complex and greater queries.

With the emergence of professional data mining companies, the costs associated with process such as web data extraction, web scraping, web crawling and web data mining have greatly being made affordable.





Source: http://ezinearticles.com/?Data-Mining-As-a-Process&id=7181033

Saturday, 14 September 2013

Various Data Mining Techniques

Also called Knowledge Discover in Databases (KDD), data mining is the process of automatically sifting through large volumes of data for patterns, using tools such as clustering, classification, association rule mining, and many more. There are several major data mining techniques developed and known today, and this article will briefly tackle them, along with tools for increased efficiency, including phone look up services.

Classification is a classic data mining technique. Based on machine learning, it is used to classify each item on a data set into one of predefined set of groups or classes. This method uses mathematical techniques, like linear programming, decision trees, neural network, and statistics. For instance, you can apply this technique in an application that predicts which current employees will most probably leave in the future, based on the past records of those who have resigned or left the company.

Association is one of the most used techniques, and it is where a pattern is discovered basing on a relationship of a specific item on other items within the same transaction. Market basket analysis, for example, uses association to figure out what products or services are purchased together by clients. Businesses use the data produced to devise their marketing campaign.

Sequential patterns, too, aim to discover similar patterns in data transaction over a given business phase or period. These findings are used for business analysis to see relationships among data.

Clustering makes useful cluster of objects that maintain similar characteristics using an automatic method. While classification assigns objects into predefined classes, clustering defines the classes and puts objects in them. Predication, on the other hand, is a technique that digs into the relationship between independent variables and between dependent and independent variables. It can be used to predict profits in the future - a fitted regression curve used for profit prediction can be drawn from historical sale and profit data.

Of course, it is highly important to have high-quality data in all these data mining techniques. A multi-database web service, for instance, can be incorporated to provide the most accurate telephone number lookup. It delivers real-time access to a range of public, private, and proprietary telephone data. This type of phone look up service is fast-becoming a defacto standard for cleaning data and it communicates directly with telco data sources as well.

Phone number look up web services - just like lead, name, and address validation services - help make sure that information is always fresh, up-to-date, and in the best shape for data mining techniques to be applied.

Equip your business with better leads and get better conversion rates by using phone look up and similar real-time web services.




Source: http://ezinearticles.com/?Various-Data-Mining-Techniques&id=6985662

Friday, 13 September 2013

Why Outsourcing Data Mining Services?

Are huge volumes of raw data waiting to be converted into information that you can use? Your organization's hunt for valuable information ends with valuable data mining, which can help to bring more accuracy and clarity in decision making process.

Nowadays world is information hungry and with Internet offering flexible communication, there is remarkable flow of data. It is significant to make the data available in a readily workable format where it can be of great help to your business. Then filtered data is of considerable use to the organization and efficient this services to increase profits, smooth work flow and ameliorating overall risks.

Data mining is a process that engages sorting through vast amounts of data and seeking out the pertinent information. Most of the instance data mining is conducted by professional, business organizations and financial analysts, although there are many growing fields that are finding the benefits of using in their business.

Data mining is helpful in every decision to make it quick and feasible. The information obtained by it is used for several applications for decision-making relating to direct marketing, e-commerce, customer relationship management, healthcare, scientific tests, telecommunications, financial services and utilities.

Data mining services include:

    Congregation data from websites into excel database
    Searching & collecting contact information from websites
    Using software to extract data from websites
    Extracting and summarizing stories from news sources
    Gathering information about competitors business

In this globalization era, handling your important data is becoming a headache for many business verticals. Then outsourcing is profitable option for your business. Since all projects are customized to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure can be realized.

Advantages of Outsourcing Data Mining Services:

    Skilled and qualified technical staff who are proficient in English
    Improved technology scalability
    Advanced infrastructure resources
    Quick turnaround time
    Cost-effective prices
    Secure Network systems to ensure data safety
    Increased market coverage

Outsourcing will help you to focus on your core business operations and thus improve overall productivity. So data mining outsourcing is become wise choice for business. Outsourcing of this services helps businesses to manage their data effectively, which in turn enable them to achieve higher profits.




Source: http://ezinearticles.com/?Why-Outsourcing-Data-Mining-Services?&id=3066061

Thursday, 12 September 2013

Data Mining Process - Why Outsource Data Mining Service?

Overview of Data Mining and Process:
Data mining is one of the unique techniques for investigating information to extract certain data patterns and decide to outcome of existing requirements. Data mining is widely use in client research, services analysis, market research and so on. It is totally based on mathematical algorithm and analytical skills to drive the desired results from the huge database collection.

Information mining is mostly used by financial analyzer, business and professional organization and also there are many growing area of business that are get maximum advantages of data extract with use of data warehouses in their small to large level of businesses.

Most of functionalities which are used in information collecting process define as under:

* Retrieving Data

* Analyzing Data

* Extracting Data

* Transforming Data

* Loading Data

* Managing Databases

Most of small, medium and large levels of businesses are collect huge amount of data or information for analysis and research to develop business. Such kind of large amount will help and makes it much important whenever information or data required.

Why Outsource Data Online Mining Service?

Outsourcing advantages of data mining services:
o Almost save 60% operating cost
o High quality analysis processes ensuring accuracy levels of almost 99.98%
o Guaranteed risk free outsourcing experience ensured by inflexible information security policies and practices
o Get your project done within a quick turnaround time
o You can measure highly skilled and expertise by taking benefits of Free Trial Program.
o Get the gathered information presented in a simple and easy to access format

Thus, data or information mining is very important part of the web research services and it is most useful process. By outsource data extraction and mining service; you can concentrate on your co relative business and growing fast as you desire.

Outsourcing web research is trusted and well known Internet Market research organization having years of experience in BPO (business process outsourcing) field.

If you want to more information about data mining services and related web research services, then contact us.



Source: http://ezinearticles.com/?Data-Mining-Process---Why-Outsource-Data-Mining-Service?&id=3789102

Wednesday, 11 September 2013

Why Outsource Data Entry Services?

All large business and organizations are faced with the task of processing huge amounts of data on a daily basis. The data to be processed may range from indexing of vouchers and documents to collecting of information from customers and vendors. In order to save on the huge amount of time, energy and monetary resources which go into data entry, businesses world wide have discovered the multiple benefits of outsourcing their Data Entry Services to India. Along with quick turn around time, reliability of data accuracy and confidentiality of all client databases, outsourcing Data Entry Services to India also proves to be extremely cost-effective.

What are the kinds of Services that can be outsourced?

Most outsourcing companies provide custom made Data-Entry Services depending on the client's specifications. A few of them provided by Indian Outsourcing Companies are;

- Data entry from product catalogs to web based systems
- Entry from hard/soft copy to any preferred database format
- Insurance claims processing
- Image Entry
- Data mining and warehousing
- Data cleansing
- Entry from hospital records, patient notes and accident reports
- From e-book and e-magazine publications on the Internet
- Entry for mailing lists
- PDF document indexing
- Online data capture services
- Online order entry and follow up services
- Creating new databases and updating of existing databases for banks, airlines, government agencies
- direct marketing services and service providers
- Web based indexed document retrieval services, tools and support
- Entry of legal documents
- Indexing of vouchers and documents
- Hand written ballot/cards entry
- Online completion of surveys and responses of customers for various companies
- Business card indexing
- Custom data export/import interfaces with audits
- Bonded mail handling cash, credit and check processing
- Entry of Questionnaires
- Entry of Company Reports
- From Printed / Handwritten Source
- From Yellow Pages / White Pages
- Entry of Dictionaries, Manuals and Encyclopedia
- Entry of Surveys

What is the process?

Since most Indian companies hire only competent and highly qualified staff, outsourcing Data Entry Services to India ensures that the client is fully satisfied with the end result. Added to this the client's data confidentiality and security is viewed as extremely important. Each project goes through a specific data entry service plan that aims to fulfill the exact need of the customer and the error rate is always kept below 2-3%. The process is as follows:

- Data is processed, scanned and uploaded on to secure FTP online server
- Data is subsequently accessed over VPN and downloaded
- Data is individually indexed and sorted into private work folders
- Data is entered into specific applications as per client's requirements
- Data is checked and assessed for errors
- Data is finally sent to the customers

What are the benefits of outsourcing Services?

Oversees companies outsourcing their Data Entry Services to India have the assurance that their projects will be delivered on time with the highest levels of data quality and accuracy. The cost competitive prices, highly qualified employees, fast turnaround time and data security offered by outsourcing vendors, make sure that all of the client's objectives and goals are met. Outsourcing of these Services to India has been proven to be an advantageous choice for businesses worldwide.



Source: http://ezinearticles.com/?Why-Outsource-Data-Entry-Services?&id=1428867

Monday, 9 September 2013

Effectiveness of Web Data Mining Through Web Research

Web data mining is systematic approach to keyword based and hyperlink based web research for gaining business intelligence. It requires analytical skills to understand hyperlink structure of given website. Hyperlinks possess enormous amount of hidden human annotations that can help automatically understand the authority. If the webmaster provides a hyperlink pointing to another website or web page, this action is perceived as an endorsement to that webpage. Search engines highly focus on such endorsements to define the importance of the page and place them higher in organic search results.

However every hyperlink does not refer to the endorsement since the webmaster may have used it for other purposes, such as navigation or to render paid advertisements. It is important to note that authoritative pages rarely provide informative descriptions. For an instant, Google's homepage may not provide explicit self-description as "Web search engine."

These features of hyperlink systems have forced researchers to evaluate another important webpage category called hubs. A hub is a unique, informative webpage that offers collections of links to authorities. It may have only a few links pointing to other web pages but it links to a collection of prominent sites on a single topic. A hub directly awards authority status on sites that focus on a single topic. Typically, a quality hub points to many quality authorities, and, conversely, a web page that many such hubs link to can be deemed as a superior authority.

Such approach of identifying authoritative pages has resulted in the development of various popularity algorithms such as PageRank. Google uses PageRank algorithm to define authority of each webpage for a relevant search query. By analyzing hyperlink structures and web page content, these search engines can render better-quality search results than term-index engines such as Ask and topic directories such as DMOZ.




Source: http://ezinearticles.com/?Effectiveness-of-Web-Data-Mining-Through-Web-Research&id=5094403

Saturday, 7 September 2013

Data Mining's Importance in Today's Corporate Industry

A large amount of information is collected normally in business, government departments and research & development organizations. They are typically stored in large information warehouses or bases. For data mining tasks suitable data has to be extracted, linked, cleaned and integrated with external sources. In other words, it is the retrieval of useful information from large masses of information, which is also presented in an analyzed form for specific decision-making.

Data mining is the automated analysis of large information sets to find patterns and trends that might otherwise go undiscovered. It is largely used in several applications such as understanding consumer research marketing, product analysis, demand and supply analysis, telecommunications and so on. Data Mining is based on mathematical algorithm and analytical skills to drive the desired results from the huge database collection.

It can be technically defined as the automated mining of hidden information from large databases for predictive analysis. Web mining requires the use of mathematical algorithms and statistical techniques integrated with software tools.

Data mining includes a number of different technical approaches, such as:

    Clustering
    Data Summarization
    Learning Classification Rules
    Finding Dependency Networks
    Analyzing Changes
    Detecting Anomalies

The software enables users to analyze large databases to provide solutions to business decision problems. Data mining is a technology and not a business solution like statistics. Thus the data mining software provides an idea about the customers that would be intrigued by the new product.

It is available in various forms like text, web, audio & video data mining, pictorial data mining, relational databases, and social networks. Data mining is thus also known as Knowledge Discovery in Databases since it involves searching for implicit information in large databases. The main kinds of data mining software are: clustering and segmentation software, statistical analysis software, text analysis, mining and information retrieval software and visualization software.

Data Mining therefore has arrived on the scene at the very appropriate time, helping these enterprises to achieve a number of complex tasks that would have taken up ages but for the advent of this marvelous new technology.



Source: http://ezinearticles.com/?Data-Minings-Importance-in-Todays-Corporate-Industry&id=2057401

Friday, 6 September 2013

One of the Main Differences Between Statistical Analysis and Data Mining

Two methods of analyzing data that are common in both academic and commercial fields are statistical analysis and data mining. While statistical analysis has a long scientific history, data mining is a more recent method of data analysis that has arisen from Computer Science. In this article I want to give an introduction to these methods and outline what I believe is one of the main differences between the two fields of analysis.

Statistical analysis commonly involves an analyst formulating a hypothesis and then testing the validity of this hypothesis by running statistical tests on data that may have been collected for the purpose. For example, if an analyst was studying the relationship between income level and the ability to get a loan, the analyst may hypothesis that there will be a correlation between income level and the amount of credit someone may qualify for.

The analyst could then test this hypothesis with the use of a data set that contains a number of people along with their income levels and the credit available to them. A test could be run that indicates for example that there may be a high degree of confidence that there is indeed a correlation between income and available credit. The main point here is that the analyst has formulated a hypothesis and then used a statistical test along with a data set to provide evidence in support or against that hypothesis.

Data mining is another area of data analysis that has arisen more recently from computer science that has a number of differences to traditional statistical analysis. Firstly, many data mining techniques are designed to be applied to very large data sets, while statistical analysis techniques are often designed to form evidence in support or against a hypothesis from a more limited set of data.

Probably the mist significant difference here, however, is that data mining techniques are not used so much to form confidence in a hypothesis, but rather extract unknown relationships may be present in the data set. This is probably best illustrated with an example. Rather than in the above case where a statistician may form a hypothesis between income levels and an applicants ability to get a loan, in data mining, there is not typically an initial hypothesis. A data mining analyst may have a large data set on loans that have been given to people along with demographic information of these people such as their income level, their age, any existing debts they have and if they have ever defaulted on a loan before.

A data mining technique may then search through this large data set and extract a previously unknown relationship between income levels, peoples existing debt and their ability to get a loan.

While there are quite a few differences between statistical analysis and data mining, I believe this difference is at the heart of the issue. A lot of statistical analysis is about analyzing data to either form confidence for or against a stated hypothesis while data mining is often more about applying an algorithm to a data set to extract previously unforeseen relationships.



Source: http://ezinearticles.com/?One-of-the-Main-Differences-Between-Statistical-Analysis-and-Data-Mining&id=4578250

Thursday, 5 September 2013

Business Uses For Data Mining

When used wisely within Customer Relationship Management applications data mining can significantly improve the bottom line. It will end the process of randomly contacting a prospective or current customer through a call centre or by mailshot. With the effective use of data mining a company can concentrate its efforts on targeting prospects that have a high likelihood of being open to an offer. This in turn gives the ability for more sophisticated methods to be used such as campaigns being optimised to individuals.

Businesses that employ data mining techniques will usually see a high return on investment, but will also find that the number of predictive models can quickly increase. Rather than just implementing one model to predict which customers will respond positively, a business could build a different models for each region and customer type. Then instead of sending an offer to all prospects it may only want to send to prospects that have a high chance of taking up the offer. It may also want to determine which customers are going to be profitable during a certain time frame and direct their efforts towards them. To be able to maintain this quantity and quality of models, these model versions have to be well managed and automated data mining implemented.

Human Resources departments can also make a valid case for using data mining. It will allow them to in identifying the characteristics of their most successful employees. Information gained from such as resource can help HR focus their recruiting efforts accordingly.

Another example of data mining, is that used in retail. Often called market basket analysis, it is, for example, when a store records the purchases of customers, it could identify those customers who favour silk shirts over cotton ones; or customers who bought certain grocery items would also also buy the same specific item as well. This is often highlighted in on-line stores when you are told that so many people who bought a certain book or CD also bought XX as well.

Although some explanations of relationships may be difficult, taking advantage of it is easier. The example deals with association rules within transaction-based data. Not all data are transaction based and logical or inexact rules may also be present within a database. In a manufacturing application, an inexact rule may state that 73% of products which have a specific defect or problem will develop a secondary problem within the next six months.



Source: http://ezinearticles.com/?Business-Uses-For-Data-Mining&id=2877159

Tuesday, 3 September 2013

Usefulness of Web Scraping Services

For any business or organization, surveys and market research play important roles in the strategic decision-making process. Data extraction and web scraping techniques are important tools that find relevant data and information for your personal or business use. Many companies employ people to copy-paste data manually from the web pages. This process is very reliable but very costly as it results to time wastage and effort. This is so because the data collected is less compared to the resources spent and time taken to gather such data.

Nowadays, various data mining companies have developed effective web scraping techniques that can crawl over thousands of websites and their pages to harvest particular information. The information extracted is then stored into a CSV file, database, XML file, or any other source with the required format. After the data has been collected and stored, data mining process can be used to extract the hidden patterns and trends contained in the data. By understanding the correlations and patterns in the data; policies can be formulated and thereby aiding the decision-making process. The information can also be stored for future reference.

The following are some of the common examples of data extraction process:

• Scrap through a government portal in order to extract the names of the citizens who are reliable for a given survey.
• Scraping competitor websites for feature data and product pricing
• Using web scraping to download videos and images for stock photography site or for website design

Automated Data Collection
It is important to note that web scraping process allows a company to monitor the website data changes over a given time frame. It also collects the data on a routine basis regularly. Automated data collection techniques are quite important as they help companies to discover customer trends and market trends. By determining market trends, it is possible to understand the customer behavior and predict the likelihood of how the data will change.

The following are some of the examples of the automated data collection:

• Monitoring price information for the particular stocks on hourly basis
• Collecting mortgage rates from the various financial institutions on the daily basis
• Checking on weather reports on regular basis as required

By using web scraping services it is possible to extract any data that is related to your business. The data can then be downloaded into a spreadsheet or a database for it to be analyzed and compared. Storing the data in a database or in a required format makes it easier for interpretation and understanding of the correlations and for identification of the hidden patterns.

Through web scraping it is possible to get quicker and accurate results and thus saving many resources in terms of money and time. With data extraction services, it is possible to fetch information about pricing, mailing, database, profile data, and competitors data on a consistent basis. With the emergence of professional data mining companies outsourcing your services will greatly reduce your costs and at the same time you are assured of high quality services.




Source: http://ezinearticles.com/?Usefulness-of-Web-Scraping-Services&id=7181014

Monday, 2 September 2013

Importance of Data Mining Services in Business

Data mining is used in re-establishment of hidden information of the data of the algorithms. It helps to extract the useful information starting from the data, which can be useful to make practical interpretations for the decision making.
It can be technically defined as automated extraction of hidden information of great databases for the predictive analysis. In other words, it is the retrieval of useful information from large masses of data, which is also presented in an analyzed form for specific decision-making. Although data mining is a relatively new term, the technology is not. It is thus also known as Knowledge discovery in databases since it grip searching for implied information in large databases.
It is primarily used today by companies with a strong customer focus - retail, financial, communication and marketing organizations. It is having lot of importance because of its huge applicability. It is being used increasingly in business applications for understanding and then predicting valuable data, like consumer buying actions and buying tendency, profiles of customers, industry analysis, etc. It is used in several applications like market research, consumer behavior, direct marketing, bioinformatics, genetics, text analysis, e-commerce, customer relationship management and financial services.

However, the use of some advanced technologies makes it a decision making tool as well. It is used in market research, industry research and for competitor analysis. It has applications in major industries like direct marketing, e-commerce, customer relationship management, scientific tests, genetics, financial services and utilities.

Data mining consists of major elements:

    Extract and load operation data onto the data store system.
    Store and manage the data in a multidimensional database system.
    Provide data access to business analysts and information technology professionals.
    Analyze the data by application software.
    Present the data in a useful format, such as a graph or table.

The use of data mining in business makes the data more related in application. There are several kinds of data mining: text mining, web mining, relational databases, graphic data mining, audio mining and video mining, which are all used in business intelligence applications. Data mining software is used to analyze consumer data and trends in banking as well as many other industries.



Source: http://ezinearticles.com/?Importance-of-Data-Mining-Services-in-Business&id=2601221